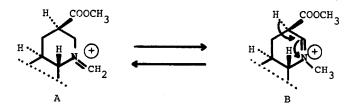
a novel approach to cyclic $\mathfrak g\text{-carbonyl-enamines}$ $\Delta^{7,\,8}\text{-lysergic}$ acid derivatives via the i-olonovski reaction.

P.Stütz and P.A.Stadler

SANDOZ Ltd., Pharmaceutical Division, Chemical Research,

Basle, Switzerland


(Received in UK 29 October 1973; accepted for publication 8 November 1973)

Cyclic vinylogous amides, e.g. 1,4,5,6-tetrahydronicotinic acid derivatives have repeatedly been demonstrated to be useful intermediates in organic synthesis ¹⁾. So far, the latter are accessible only by partial hydrogenation of the corresponding N-quarternary nicotinic acid derivatives ¹⁾.

In connection with our synthesis of 6-nor-lysergic acid $^{2)}$, we investigated the reaction of the N-oxide $\underline{1}$ (R=H) m.p. $193-195^{\circ}$ (dec.) with acetic anhydride in chloroform. When the reaction was complete, two main products were separated by silicagel chromatography. The more polar one, m.p. 290° (dec.) $\alpha_{D}^{20} = -210^{\circ}$ (c=1, DMSO), isolated in about 10% yield, was identical with the authentic 6-nor-6-acetyl-derivative α_{D}^{20} (R=H) prepared by acetylation of 6-nor-9,10-dihydrolysergic acid methylester α_{D}^{20} . It is thus the product expected from a normal Polonovski reaction.

The less polar product m.p. $232-234^{\circ}$ (dec.) [α] $_{\rm D}^{2O}$ = -254° (pyridine) could be obtained in 24% yield and has been assigned structure $\underline{3}$ (R=H) on the basis of its stability to alkaline hydrolysis $_{\rm A}^{3}$ and the following spectroscopic evidence: ${\rm C_{17}^{H_{18}N_{2}O_{2}}(282.3): M^{+}}$ = $282.0_{\rm max}$ (CH $_{\rm 2}$ Cl $_{\rm 2}$) 223 nm (log $\underline{\mathcal{E}}$ 4.50) 292 nm (log $\underline{\mathcal{E}}$ 4.39), $\underline{\mathcal{V}}$ (CH $_{\rm 2}$ Cl $_{\rm 2}$) 1610, 1625, 1680 cm $^{-1}$, nmr (CDCl $_{\rm 3}$) 3.05(s,3H) 3.75(s,3H) 7.4(s,1H) ppm. These data are characteristic of N-methyl-1,4,5,6-tetrahydronicotinic acid methylester $_{\rm 3}^{3}$).

Since $\underline{2}$ is probably formed $\underline{4}$) after hydrolysis of the intermediate immonium salt A, and $\underline{3}$ by deprotonation of B, we reasoned that an existing tautomeric equilibrium between A and B could be shifted by transforming B into the stabilised enamine $\underline{3}$ with a relatively strong base e.g. triethylamine TEA or 1,4-diazabicyclo[2,2,2]octane.

Indeed, $\underline{3}$ (R=H) could be conveniently prepared in a one-pot reaction from 9,10-dihydrolysergic acid methylester in 45-50 % yield by the general reaction as given below for the preparation of $\underline{5}$. Less than 3 % of compound $\underline{2}$ (R=H) was formed! Similarly, $\underline{3}$ (R=CH₃) m.p. 179-180° $[\alpha]_D^{2O} = -220^{\circ}$ (pyridine) was isolated in 47 % yield and only traces of $\underline{2}$ (R=CH₃) were detected. The modest yields seem to be due only to decomposition during isolation. Acetic anhy-

dride could be replaced by propionic- or benzoic anhydride without affecting the yield but with pyridine as base poorer results were obtained.

The usefulness of this reaction is demonstrated by the preparation of the pyridinone $\underline{5}$ in 50 % yield from N-methylpiperidone-4 $\underline{4}$. Compound $\underline{5}$ has been described recently $\underline{5}$ and was obtained in 3 steps by the method of Winterfeldt $\underline{6}$ 0 starting from the relatively unaccessible 4-methoxy-pyridine.

After completion of our work, another application of the Polonovski reaction has been published ⁸⁾. Starting from N-methylpiperidine-N-oxide, 3-trifluoroacetyl-N-methyl-piperideine-2 was obtained. This very specific reaction, however, could not be generalised under our reaction conditions and led only to complex mixtures.

The following synthesis of $\underline{5}$ is typical: Into a stirred solution of 1.18 ml (10 m moles) of freshly distilled N-methyl-piperidone-4 in 20 ml of abs. CH_2Cl_2 is added at $-40^{\circ}C$ a solution of 11 equiv. of MCPBA* in 20 ml of CH_2Cl_2 . After stirring at this temperature for 30 minutes 1.04 ml (11 m moles) of acetic anhydride and 6.9 ml (50 m moles) of triethylamine are added to the clear solution which is then stirred for additional 60 minutes at 0° . Work up with ice-cold NaHCO₃/CH₂Cl₂ affords an oil which distils at 110° /1 mm Hg to yield 0.55 g (ca.50%) of $\underline{5}$ as a yellowish oil. nmr (CDCl₃): 2.5(t,2H,J=8) 3.1(s,3H) 3.5(t,2H,J=8) 4.85(d,1H,J=8) 7.1(d,1H,J=8) $\underline{5}$).

^{*)} MCPBA = m-chloroperbenzoic acid

Thus, the Polonovski reaction, which has already been shown to yield cyclic enamines in the case of nupharidine ⁷⁾, appears to be also applicable for the synthesis of vinylogous amides in a modified form.

REFERENCES

- cf.: E.Wenkert and B.Wickberg, J.Am.Chem.Soc. <u>87</u>, 1580 (1965).
 L.D.Quin and D.O.Pionion, J.Org.Chem. <u>35</u>, 3134 (1970).
 F.Troxler, Helv.chim.Acta <u>56</u>, 374 (1973).
- 2) T.Fehr, P.A.Stadler and A.Hofmann, Helv.chim.Acta 53, 2197 (1970).
- 3) J.C.Powers, J.Org.Chem. 30, 2534 (1965).
- 4) cf.: R.Michelot, Bull.Soc.chim.France 1969, 4377.
- 5) Y. Tamura, M. Kunimoto, T. Masui and M. Terashima, Chem. & Ind. 1972, 168.
- 6) E.Winterfeldt, Chem. Ber. 97, 2463 (1964).
- 7) R.T.LaLonde, E.Auer, Ch.F.Wong and V.P.Muralidharan, J.Am.Chem.Soc. 93, 2501 (1971).
- 8) E.Wenkert, B.Chauncy and S.H.Wentland, Synth.Communications $\underline{3}$, 73 (1973).